1-3 Appendix A

The elements of the diffusion matrix, D, are given by

(A1)Dαα=n=0kdkDααnk(A2)Dαp=Dpα=n=0kdkDαpnk(A3)Dpp=n=0kdkDppnk

For each harmonic resonance number n and k, the pitch-angle diffusion coefficient Dααnk is given by

(A4)Dααnk=limVqσ24πV[nΩσ/(γω)sin2αcosα]2|Θnk|2|vωk||k

The right-hand side of equation (A4) is evaluated at the resonant parallel wave number k and frequency ω that satisfies the resonance condition

(A5)ωkv=nΩσ/γ

The value of Θnk is given by

(A6)Θnk=vvEk,Jn+Ek,LJn1+Ek,RJn+12

where Jn is the n-th order Bessel function with argument kp/(mσΩσ), and the Fourier transform of the wave electric field has been written in terms of its parallel Ek,, left-hand Ek,L, and right-hand Ek,R, components, with

(A7)Ek,L=12(Ek,x+iEk,y)(A8)Ek,R=12(Ek,xiEk,y)

From equations A7 and A8, we can easily solve for Ek,x and Ek,y:

(add)Ek,x=12(Ek,L+Ek,R),Ek,y=1i2(Ek,LEk,R)

Using cold plasma theory, Ek,L and Ek,R can be rewritten in terms of Ek,, the refractive index μ, the wave-normal angle ψ, and the Stix parameters R,L,S,D, and P [Lyons, 1974b], to give

(A9)Ek,L=(μ2sin2ψPμ2sinψcosψ)(1D(μ2S))Ek,2(A10)Ek,R=(μ2sin2ψPμ2sinψcosψ)(1+D(μ2S))Ek,2

The Stix parameters are defined as:

(add)R=1σωpσ2ω(ωΩσ)L=1σωpσ2ω(ω+Ωσ)P=1σωpσ2ω2S=R+L2D=RL2

The Maxwell-Faraday equation in Fourier space is:

(add)k×Ek=ωBk|Ek,|=c|Bk|

and

(add)|Ek|2=|Ek,|2+|Ek,|2=|Ek,x|2+|Ek,y|2

Thus, Ek, can be written as a function of the magnitude of the Fourier transform of the wave magnetic field at each k, namely |Bk|:

(A11)|Ek,|2=c2|Bk|2μ2[(RL2(μ2S))2(μ2sin2ψPμ2sinψcosψ)2+(Pμ2sinψ)2]1

Combining these results gives

(A12)|Θnk|2=c2|Bk|2μ2|Φn,k|2

with

(A13)|Φn,k|2={[(μ2Lμ2S)Jn+1+(μ2Rμ2S)Jn1](μ2sin2ψP2μ2)+cotαsinψcosψJn}2(RL2(μ2S))2(Pμ2sin2ψμ2)2+(Pcosψμ2)2

We assume that the wave magnetic field can be described by [Lyons, 1974b]

(A14)|Bk|2=VN(ω)B2(ω)g(ψ)

with

(A15)N(ω)=12π2XminXmaxg(X)|J(k,kω,X)|kdX

Here B2(ω) is the wave magnetic field intensity squared per unit frequency and g(X) gives the variation of wave magnetic field energy with wave normal angle,

(add)g(X)={exp[(XXmXw)2]XminXXmax0otherwise,with X=tan(ψ)

Using the cold plasma dispersion relation D(k,ω,X)=0, and the Jacobian J(k,kω,X), A15 can be rewritten to obtain the equation (see 1-3 Appendix B):

(add)N(ω)=12π2XminXmaxg(X)k2(1+X2)32Dω[Dk]1XdX

Combining equations (A1)–(A3), (A4), and (A12) and transforming the integrals from k to X leads to the final form of the diffusion coefficients' expression:

Dαα=n=nlnhXminXmaxXdXDααnXDαp=Dpα=n=nlnhXminXmaxXdXDαpnXDpp=n=nlnhXminXmaxXdXDppnX

with

DααnX=iqσ2ωi24π(1+X2)N(ωi)[nΩσ/(γωi)sin2αcosα]2B2(ωi)g(X)|Φn,k|2|vωk||k||iDαpnX=DααnX[sinαcosαnΩσ/(γωi)sin2α]k||iDppnX=DααnX[sinαcosαnΩσ/(γωi)sin2α]k||i2